

ORIENT CEMENT LIMITED Chittapur, Karnataka

Work_®

MAR 2024-MAR 2025

Great Place

То

Team Members

P Murali Mohan Raju DGM – Process

Rohit S Anashetty AGM - Instrumentation B Pradeep Varma Manager - Electrical

Orient Cement is operating at 3 locations in India:

- Integrated Plant Devapur, Telangana
- Integrated Plant Chittapur, Karnataka
- Cement Grinding Unit Jalgaon, Maharashtra
- Overall Capacity of Orient Cement is 8.0 MTPA.

Plant is certified with IMS:

- QMS 9001 : 2015
- EMS 14001 : 2015
- OHSAS 18001: 2007
- EnMS 50001: 2018
- FMS 41001 : 2018
- Green Pro Certified by CII
- Member of GCCA (Global cement & concrete association)

Great

Place

То

CEMENT PROCESS & PRODUCT DETAILS

Great Place To Work。 Certified MAR 2024-MAR 2025

Process

Products

53 Grade(OPC)

43 Grade(OPC)

Plant features

Great Place То Work Certified

CPP WHRS **45MW** 10.1 MW

Green Belt : 273749 Saplings (Till 31st March 2023)

Major Equipment details..

Great Place To Work。 Certified MAR 2024-MAR 2025

Crusher Make : L&T Capacity: 1200 TPD Operating @ 1190 TPD

Raw Mill-1 Make: FLS HRP3.0 Capacity: 250TPH Operating @ 320TPH Raw Mill-2 Make: FLS HRP3.0 Capacity: 250TPH

Operating @

320TPH

Operating @ 28 TPH (Pet coke)

Kiln Make : FLS Capacity: 6600 TPD Operating @ 6820 TPD

Cement Mill-1 Make : FLS OK39.4 **Capacity:** 250TPH (OPC) @ 3000 c m^2 /gm Blaine 265TPH (PPC) @ 4000 c m^2 /gm Blaine **Operating** @ 230TPH (OPC) @3200 cm^2/gm 310 TPH (PPC) @ 3600 cm^2/gm

Cement Mill-2 Make : FLS OK39.4

Capacity:

250TPH (OPC) @ 3000 cm²/gm Blaine

265TPH (PPC) @ 4000 cm²/gm Blaine

Operating @ 230TPH (OPC) @3200 cm²/gm Blaine 310 TPH (PPC) @ 2500

@ 3600 cm²/gm Blaine

SEC :- Specific Energy Consumption

Up to Clinkerization (KW/MT of Clinker)

Overall Cement (KW/MT of Cement)

Great Place To Work。 Certified Mar 2024-Mar 2025 INDIA

Electrical SEC

Overall Cement **OPC** (KW/MT of Cement) Overall Cement PPC (KW/MT of Cement)

Comparison with National Benchmark

Great Place To Work。 Certified MAR 2024-MAR 2025

Specific Energy Consumption	National Benchmark	Yearly Best Figures of OCL, Chittapur	SEC on 2023-24
Thermal - Kcal/Kg Clinker	675	677 (FY 2022-23)	680
Electrical-kWh/T of Clinker	42.59	43.79 (FY 2022-23)	43.87
Electrical-kWh/T of Cement	56.10	59.32 (FY 2022-23)	59.36

□ The power achieved based on 60% - 40% of OPC & PPC products

Road map to Achieve National/Global Benchmark

Great Place To Work Certified Mar 2024-Mar 2025

Great Place To Work. Certified MAR 2024-MAR 2025

S1. No.	Energy Conservation Projects	Electrical energy savings (In Lakhs kWh)	Thermal savings (Million KCal)	Investment (Rs in Million)	Annual Savings (Rs in Million)
1.	Optimization of Kiln Coal transportation phase density.	1.92	NIL	0.10	1.57
2.	Cement Mill-1 Fan Efficiency improvement from 76.3 % to 85.4 %.	6.45	NIL	0.10	4.87
3.	Cement Mill-2 Fan Efficiency improvement from 75.6 % to 85.4 %.	5.10	NIL	0.10	3.85
4.	Improvement of cooler ESP fan efficiency from 40.5% to 86.15% by replacing the new impeller.	9.40	NIL	0.50	7.10
5.	Replacement of all old and inefficient lighting system by Energy efficient Lighting system i.e., LED.	4.51	NIL	4.35	3.41
6.	Intelligent flow controller in compressed air system for pre clinkerization.	2.47	NIL	1.15	1.8

Energy Conservation Project Details of last 3 years.

Great Place To Work。 Certified MAR 2024-MAR 2025 INDIA

Year	No of Projects	Investments (INR Million)	Savings (INR Million)
FY 2021-22	09	1.18	25.50
FY 2022-23	09	3.05	17.02
FY 2023-24	05	19.79	20.59

Major Energy Saving Project Implemented FY 2021-22

Great Place To Work。 Certified MAR 2024-MAR 2025 INDIA

SI. Energy conservation		Electrical energy savings	Thermal savings	Total Savings	Investment	Pay back
INU.	project	In lac kWh	Ton/year	Rs in Million	Rs in Million	III IIIOIItii5
1.	Heat resistant paint applied in Kiln shell	-	5.36	12.1	2.05	2.03
2.	Cooler exit duct coating avoided by water spray line modification	1.15	-	0.95	0.525	6.63
3.	Idle running for coal unloading circuit by reducing the wagon unloading time	2.592	-	2.02	-	Immediate
4.	VFD installed for crusher bag filter fan 111FN303	1.05	-	0.861	0.45	0.52

Major Energy Saving Project Implemented FY 2021-22

Great Place To Work。 Certified MAR 2025-MAR 2025

S1.	Energy conservation	Electrical energy savings	Thermal savings	Total Savings	Investment	Pay back
	project	In lac kWh	Ton/year	Rs in Million	Rs in Million	
5.	Bag filter fan interlock with packer operation	0.51	-	0.367	-	Immediate
6.	Dispersion plate installed in fly ash entry in both Cement mill	0.20	-	0.145	0.25	1.72
7.	Changed HPSV lamps to LED lamps in Raw mill section	0.146	-	0.104	0.67	8.12
8.	Raw mill circuit bag filters stopping in monsoon	4.14	-	0.29	-	Immediate
9.	Compressor pressure reduced 5.8-5.3	0.05	-	0.20	-	Immediate

Major Energy Saving Project Implemented FY 2022-23

Great Place To Work。 Certified MAR 2024-MAR 2025

S1. No.	S1. No. Major Energy conservation project		Thermal savings	Total Savings	Investment	Pay back in
		In lakh Wh	KCal/kg Clk	Rs in Million	Rs in Million	montil
1.	Replacement of screw conveyors with air slides in Packing Plant.	0.52	-	0.391	0.283	8
2.	Intelligent flow controller for compressor air system for post clinkerization.	2.47	-	1.8	1.15	7
3.	PID loops optimizing with AI technology in Pyro section.	0.54	1526911000	3.7	3.7	12
4.	Raw mix optimizing with AI technology.	2.58	1314269000	3.1	0.633	2
5.	Replacement of reversible belt conveyor (11KW) with Pneumatic diverting gate.	0.39	-	0.324	0.272	10

Major Energy Saving Project Implemented FY 2022-23

Great Place To Work。 Certified Mar 2024-Mar 2025 INDIA

S1. No. Major Energy conservation project		Electrical energy savings	Thermal savings	Total Savings	Investment	Pay back in months
		In lac kWh	Kcal/kg Clk	Rs in Million	Rs in Million	
6.	Improvement of Excavator efficiency.	-	0.96 LPH	1.518	Nil	Immediate
7.	Floating Platform arrangement for mines pit water pump.	1.15	-	0.48	0.48	12
8.	Replacement of HPSV lamps to LED	0.675	-	0.343	0.689	24
9.	Cement mill roller & table zero gap adjustment	2.576	-	18	Nil	Immediate

Major Energy Saving Projects Implemented FY 2023-24

Great Place To Work. Certified MAR 2024-MAR 2025

S1. No.	Major Energy conservation	Electrical energy savings	Thermal savings	Total Savings	Investment	Pay back in
	project	In lakh Wh	kCal/kg Cl.	Rs in Million	Rs in Million	month
1.	Intelligent flow controller in compressed air system for Pre -Clinkerization	1.18	-	2.8	1.6	10
2.	Replacement of existing pump with efficiency pump suggested by CII	1.5	-	8.0	6.0	9
3.	Replacement of screw conveyor system of packer no. 4 with air slides6	1.1	-	3.19	2.83	11
4.	Replacement of reversable belt conveyor with pneumatic diverting gate in Additive circuit	0.6	-	3.11	2.47	10
5.	Replacement of Sodium vapour lamps with LED lamps	0.67	-	3.49	6.89	2

Great

Place

To Work。 Certified

Intelligent flow controller for compressor air system

Control Air IFC- Demand Side Management System- GE-45 (2250 scfm), in Pyro compressed

Energy conservation project - 02

Great Place To Work. Certified

Feasibility Study:

Feasibility Study of pumps was done by CII, and it was found that only a single pump of higher capacity is sufficient, instead of operating two pumps of lower capacity which cause excessive energy losses.

Solution:

Replace existing two lower capacity pumps by install single high efficiency pump with correct head & flow

Before	After	Benefits
Flow: 100 m ₃ /hrHead: 70 mRated Power: 30 KwNo of Pumps runnin: 2	Flow: 200 m ₃ /hrHead: 50 mRated Power: 45 KwNo of Pumps running: 1	 Energy Savings - 15 KW Total Annual savings - 8.0 Lakhs Investment - 6 Lakhs Simple payback period- 9 months

Energy Conservation Project - 03

Great Place To Work。 Certified

Replacement of Reject screw Conveyor system of packer 4 with air slides

Problems:

- Sometimes Jamming of screw conveyors taking 3-4 hours of restless effort to Clear the Jam.
- During this time, the Packer stands still, and few times resulted in delay of Wagon loading.
- 4Kwh of running load is saved from this modification.
- Saving of 0.02 Unit/Ton of cement dispatch is achieved.
- Annual Saving = Saving of 0.02 Unit/Ton X (Approx LY dispatch in Ton) X (per unit cost)

= 0.02 X 2100000 X 7.6 = Rs **3,19,200** / Annum

- 7 Air slides used = 7X19000 = 133000
- Fan cost with motor
- Valve cost & piping cost = 10000
- Service cost
- Total cost

= 90000 = Rs **2,83,000**

= 50000

□ Advantages after Replacement:

- Direct saving in terms of power consumption.
- We are not facing any jamming issue till now; as we faced in screw conveyor system.
- Maintenance cost is also very less.
- Now the area looks wide, and it is also easier to do housekeeping work.

PAYBACKPERIOD 11 months

Energy conservation project – 04

Great Place То Work Certified MAR 2024-MAR 2025

Replacement of reversible belt conveyor (11KW) with Pneumatic diverting gate.

27,000/-

24,480/-

:36,696

49,000/-

30,700/-

20,000/-

60,000/-

2,47,876/-

Total modification cost:

Diverting gate, fabrication and erection

Maintenance cost per year:

Belt conveyor	:
Skirt rubbers (36 No.s)	:
Scrapers (6 No.s)	
Idlers	:
Chute repair works Approx- 2 m ²	:
Belt replacement with joint cost	:
Manpower maintenance cost	:
TOTAL	:

Power Saving on removing belt conveyor

Average running hours	:	18hrs/day
Motor Consumption	:	6 Kwh
	:	108 Kwh
8 Rupees/Kwh	:	864/-Rupees
1 year	:	3,11,040/- Ru

5,20,000/-Zero spillages of return material. Chute Wear-out issues reduced due to fall of material from comparatively lesser height. Very less maintenance problems coming due to elimination of complete belt conveyor. Belt conveyor operational power cost got reduced.

Cost of belt conveyor spares got reduced.

PAYBACKPERIOD 10 months 1.040/- Rupees

Energy conservation project - 05

Replacement of HPSV lamps to LED

Improving Illumination and Energy Savings in Packer and Truck Loading Area.

- **PROBLEM:**
 - > Due to 70W sodium vapour lamps installed at packer and truck loading area whose colour was yellow the packer operator and loading persons sometimes got confused with colour of bags (yellow and white).

SOLUTION:

Planned replacement of 70W

(Sodium vapour lamps) with 35W

ORIENT ELECTRIC MAKE LED Lamps having white colour light. Having clear vision of white and yellow colour bags.

BENEFITS:

- Lighting power consumption reduced.
- Better illumination and clear vision for differentiating the colour of bags.
- Life of lamps increased from six months to 2 years.

This is also one of the contributors of Improvement in TAT

	ТҮРЕ	QTY (NOS)	COST OF EACH UNIT (RS.)	TOTAL COST (RS.)	POWER CONS /YR (KWH)	POWER CONS IN AMOUNT/YR (RS.)	
NEW	35 W LED	265	2600	689000	47983	249511	
	70 W HPSV	210	1200	252000	79103		
EXISTING	150 W HPSV	55	1800	99000	36135	599237	
TOTAL SAVING PER ANNUM (RS.)						349725	

Great

Place

MAR 2024-MAR 202

То Work. Certified

HPSV

24 Months

Great Place To Work。 Certified MAR 2024-MAR 202

Innovative Project – Awarded a Patent

Problem Description: The kiln is a rotary furnace comprising the Burning Zone and Calcination Zone, subjected to heavy combustion for converting raw mix powder to clinker (C3S, C2S, and C4AF as major components). While maintaining the Burning Zone at around 1300-1400°C, the kiln sometimes overheats and radiates more heat than necessary. This excess heat after the completion of the chemical reactions leads to overheating of the shell and radiation of excess heat, indicating over-combustion due to high coal firing relative to material intake. Also the high ambient temperature supports stable combustion . This radiation is measured using a sensor installed under the furnace.

Proposed Solution: When the actual radiation temperature exceeds the base value, it indicates excessive combustion inside the furnace. By sensing this heat, the system reduces coal appropriately.

Benefits:

- Coal savings of approximately 0.6 1% of coal fired for kiln firing.
- Thermal Energy Saving: 13.77 Million kCal
- Improved refractory life.
- Enhanced efficiency and cost savings

Great

Place To Work_® Certified

AI Based feed mix optimization

Introduction:

- Feed mix software (on Python platform) is jointly developed by Orient Team and Wurth Team by analyzing the Plant's 6 months running data. Several prediction models created to derive best raw mix feed ratio by considering the AFR types, raw material availability and other site conditions.
- Feed mix optimizer UI (user interface) application installed in PC's for Chittapur unit. We have also established the same tool for Devapur line-2 and line-3 units by doing some minor modifications. Now application is being executed for both plants. Further, we have installed the software in 3 PC's without OEM's support. One is being utilized for Chittapur unit and one is for Devapur line-2 & 3 units and other one has been kept as stand-by.
- Software Application iterates the previous day's 24 hours process (44 no's) parameters and QC (91 no's) parameters with the pre-defined limits and targets range. It chooses the best data by simulating with millions of permutations & combinations and recommends with top 3 combinations for the current day and previous day's actual results.
- These recommendations and targets will be circulated to process and QC teams for their further analysis and considerations.

UI Application Interface Initial Screen :

A	В	С	D	Е	F	G	Н	1	J	К	L	М
FEED DATA						Recomm	nendations	and Targe	ts			
		in the second				Variables	Top1	Top2	Тор3	Yesterday		
	REA	LIGN D	ATA			KF 212 Mi Res						
COST DATA						Main Fuel 90 Mi Res						
						Fuel Mix						
DANKING SHEET						PC Temp						
KAINKING SHEET						Avg. RM1&2 212 Mi Res						
	GEN	ERATEIN	VPUT			Total LimeStone Type1 %						
						Total Bauxite %						
						Total Lithomarge %						
						Total Other Additive %						
	S	IMULAT	E			KF LSF_pred						
TAG MAPPING						Clinker C3S_pred						
						Kiln Feed_pred						
LIMITS		DECLUT				Clinker C3A_pred						
EIIAILIS		RESULI				Clinker LIQD_pred						
						Fuel / KF Ratio_pred						
TARGETS						Sp.Power (constant)_pred						
TANGETS						Cost Index						

Ranking given based on our Importance:

	A	В	С	D
1	Variable	Order of Importance	Sorting Base	Use
2	Cost Index	1	Lower	1
3	Kiln Feed_pred	2	Higher	1
4	Sp.Power (constant)_pred	3	Lower	1
5	Fuel / KF Ratio_pred	4	Lower	1
6	KF LSF_pred	5	Lower	1
7	Clinker C3S_pred	6	Lower	1
8	Clinker LIQD_pred	7	Lower	1
9	Clinker C3A_pred	8	Lower	1
		6	1	

AI based feed mix optimization

Great Place To Work Certified Mar 2024-Mar 2025

Data Simulation Process:

=	C:\Windows\system32\cmd.exe	-	x	
IIII	C:\Users\ORIENT\Documents>cd C:\Raw Mix Feed Packages\OCL_FeedMix_PythonScript\Stage-2		Ŷ	
	C:\Raw Mix Feed Packages\OCL_FeedMix_PythonScript\Stage-2>python FMIX.cpython-39.pyc Total Number of combinations generated are 1875000			
	Starting 1875000 Number of combinations retained after validation of KF LSF_pred model : 1875000 Number of combinations retained after validation of Clinker C3S_pred model : 1875000 Number of combinations retained after validation of Kiln Feed_pred model : 1875000 Number of combinations retained after validation of Clinker C3A_pred model : 1875000 Number of combinations retained after validation of Clinker LIQD_pred model : 1875000 Number of combinations retained after validation of Fuel / KF Ratio_pred model : 1875000 Number of combinations retained after validation of Sp.Power (constant)_pred model : 1875000			
	Total Number of combinations dropped are 0			

Al based feed mix optimization

Final Recommended Outputs:

Recommendations and Targets - 21st Aug							
Variables	Top1	Top2	Тор3	Yesterday			
KF 212 Mi Res	2.50	2.50	2.76	2.76			
Main Fuel 90 Mi Res	3.30	3.30	3.30	1.99			
Fuel Mix	0.23	0.23	0.23	0.13			
PC Temp	891	891	891	901			
Avg. RM1&2 212 Mi Res	2.30	2.63	2.30	2.63			
Total LimeStone Type1 %	91.0	91.0	91.0	90.1			
Total Bauxite %	0.97	0.97	0.97	1.37			
Total Lithomarge %	6.30	6.30	6.30	6.51			
Total Other Additive %	1.71	1.71	1.71	2.08			
KF LSF_pred	94.3	94.3	94.3	94.5			
Clinker C3S_pred	48.5	48.5	48.5	48.6			
Kiln Feed_pred	454.5	454.4	453.5	453.1			
Clinker C3A_pred	8.11	8.11	8.11	8.11			
Clinker LIQD_pred	28.6	28.6	28.6	28.6			
Fuel / KF Ratio_pred	0.06	0.06	0.06	0.06			
Sp.Power (constant) pred	7.72	7.72	7.74	7.71			
Cost Index	1039	1039	1039	1212			

Great Place To Work Certified MAR 2024-MAR 2025

Great Place To Work Certified Mar 2024-Mar 2025

Final Recommended Outputs:

Recommendations and 1	Targets	20th	19th	18th	17th	16th	15th	14th	1	
Variables	Today's Top1	Aug Actual								
KF 212 Mi Res	2.50	2.76	2.71	2.84	2.76	2.79	2.77	2.79		
/lain Fuel 90 Mi Res	3.30	1.99	2.08	1.89	1.61	1.50	1.61	1.83		
Fuel Mix	0.23	0.13	0.26	0.31	0.33	0.31	0.17	0.12		
PC Temp	890.6	900.6	906.9	900.8	893.08	892.08	894.92	905.12		
Avg. RM1&2 212 Mi Res	2.30	2.63	2.54	2.70	2.82	3.17	2.48	2.50		
Total LimeStone Type 1 %	91.02	90.05	90.06	90.22	90.03	89.82	90.18	89.98		
otal Bauxite %	0.97	1.37	1.67	1.85	1.99	2.22	1.85	1.72		
Fotal Lithomarge %	6.30	6.51	7.10	6.77	6.15	6.17	6.29	6.49		
otal Other Additive %	1.71	2.08	1.18	1.16	1.83	1.78	1.68	1.81		
(FLSF pred	94.25	94.52	95.21	95.30	95.27	95.31	95.13	95.30		
Clinker C3S pred	48.49	48.58	48.72	48.62	49.24	49.45	49.04	49.31		
(iln Feed pred	454.46	453.08	444.17	448.58	443.20	455.50	451.46	445.58		
Clinker C3A pred	8.11	8.11	8.10	8.12	8.11	8.11	8.13	8.10		
Clinker LIQD pred	28.62	28.63	28.57	28.48	28.45	28.43	28.43	28.44		
uel / KF Ratio pred	0.06	0.06	0.07	0.07	0.08	0.07	0.06	0.06		
p.Power (constant) pred	7.72	7.71	7.82	7.66	7.73	7.63	7.66	7.68		
Cost Index	1039	1212	1186	1239	1303	1149	1168	1212		

Utilisation of Renewable Energy Sources

Great Place To Work。 Certified MAR 2024-MAR 2025

INDIA

Usage of Electrical Renewable Energy Sources

Yearc	Technology (electrical)	Type of energy	On site/ Off site	Installed capacity	Generation GWH	% of overall electrical energy	
EV 2021-22	Wind turbines	Wind Energy	Offsite	-	12.47	9.7	
FY 2021-22	Photo voltaic	Solar	Off site	-	11.2	8.70	
EX 2022 22	Wind turbines	Wind Energy	Offsite	-	22.43	14.62	
FY 2022-23	Photo voltaic	Solar	Offsite	-	11.55	7.54	
EV 2022 24	Wind turbines	Wind turbines Wind Energy		-	11.31	7.14	
	Photo voltaic	Solar	Offsite	-	11.31	7.14	

Great Place To Work。 Certified MAR 2024-MAR 2025

INDIA

Alternate Fuel usage for the FY 2021-22

Sl No.	Waste Details	Quantity (MT/year)	GCV (kCal/kg)	Heat value (million kcal/year)	Waste as percentage of total fuel
1.	Agriculture waste	11593	2753	30706	2.37
2.	Carbon black	889	5943	5286	0.41
3.	Pharma waste	2490	2369	5898	0.45
4.	Liquid AFR	3495	2428	8487	0.65
5.	Plastic Waste	1040	3704	3851	0.3
6.	RDF & M Waste	1128	1799	2030	0.16
7.	Dolachar	15.5	2489	38.63	0.003
	Total	4.34			

Waste Utilisation as Fuel in last three years

Great Place To Work. Certified MAR 2024-MAR 2025

Alternate Fuel usage for the FY 2022-23

Sl. No.	Waste Details	Quantity (MT/year)	GCV (KCal/kg)	Heat value (million Kcal/year)	Waste as percentage of total fuel
1.	Agriculture waste	931	2780	2588	0.19
2.	Carbon black	1461	6657	9726	0.70
3.	Pharma waste	4522	2554	11549	0.84
4.	Liquid AFR	2974	2568	7367	0.55
5.	Plastic Waste	1495	3899	5829	0.42
6.	RDF & M Waste	8640	2423	20931	1.51
7.	Rice Husk	4580	3269	14972	1.08
8.	Toohar Husk	20	3333	67	0.00
9.	Soya Husk	1234	3354	4139	0.30
Total AFR Usage (%)					5.60

Waste Utilisation as Fuel in last three years

Great Place To Work. Certified MAR 2024-MAR 2025

INDIA

Alternate Fuel usage for the FY 2023-24

Sl. No.	Waste Details	Quantity (MT/year)	NCV (KCal/kg)	Heat value (million Kcal/year)	Waste as percentage of total fuel
1.	Agriculture waste	18	3100	56	0.00
2.	Carbon black	11164	6322	70578	4.70
3.	Pharma waste	1515	2691	4076	0.20
4.	Liquid AFR	664	2503	1662	0.09
5.	Plastic Waste	4661	3482	16230	0.79
6.	RDF & M Waste	11465	2335	26770	0.78
7.	Rice Husk	5819	3258	18958	1.12
8.	Toohar Husk	3252	3388	11018	0.65
9.	Soya Husk	1584	3588	5683	0.27
		FR Usage (%)	8.60		

Great Place To Work. Certified MAR 2024-MAR 2025

Alternate Raw Material Usage for the last 03 years... ...

Year	Alternative raw material	Material replaced	Quantity used (MT/ Year)	Waste as percentage of raw material
2021-22	Red mud	laterite	20435	0.83
2022-23	Red mud	laterite	67534	2.22
2023-24	Red mud	laterite	75861	2.42

□ Target for CO2 emission reduction and action plan :

- Installed waste heat recovery power plant.
- PPC dispatch to be increased from 40% to 50%.
- \geq 35% fly using in PPC and 18.01 in SC.
- Pl usage.

Absolute Emissions :

Year	UOM	2021-22	2022-23	2023-24
Suspended Particulate Matter (SPM)	mg/Nm ³	21.63	21.98	21.72
Oxides of Nitrogen (NO _x)	mg/Nm ³	203.22	277.16	273.41
Oxides of Sulphur(SO _x)	mg/Nm ³	20.22	23.07	25.33

Implementation of ISO 50001:2018

Great Place То Work_® Certified MAR 2024-MAR 2025 INDIA

bsi.

Certificate of Registration

ENERGY MANAGEMENT SYSTEM - ISO 50001:2018

This is to certify that:

Orient Cement Ltd. Chittapur PO Itaga Malked Road Chittapur - Taluk Kalaburagi Dist 585 292 Karnataka India

Holds Certificate No:

ENMS 715352

and operates an Energy Management System which complies with the requirements of ISO 50001:2018 for the following scope:

> Mining of Limestone, Crushing, Clinkerization, Cement Grinding, Packaging & Dispatch of Cement & Clinker, utilizing Electricity, Coal & Diesel; Generation & Export of Power.

For and on behalf of BSI:

100720

Theuns Kotze, Managing Director Assurance - IMETA

Original Registration Date: 2019-11-08 Latest Revision Date: 2022-11-05

Effective Date: 2022-11-08 Expiry Date: 2025-11-07

Page: 1 of 1

This certificate was issued electronically and remains the property of BSI and is bound by the conditions of contract. This certificate was issued electronically and remains the property of bot and is bound by the conditions of contract. An electronic certificate can be authenticated **online**. Printed copies can be validated at www.bsi-global.com/ClientDirectory or telephone +91 11 2692 9000. Further clarifications regarding the scope of this certificate and the applicability of ISO 50001:2018 requirements may be obtained by consulting the organization.

This certificate is valid only if provided original copies are in complete set.

Information and Contact: BSI, Kitemark Court, Davy Avenue, Knowlhill, Milton Keynes MK5 8PP. Tel: + 44 345 080 9000 BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK. A Member of the BSI Group of Companies.

NABL CERTIFICATE OF ACCREDITATION

Great Place To Work。 Certified MAR 2024-MAR 2022 INDIA

National Accreditation Board for Testing and Calibration Laboratories

> Certificate No.: TC-10271

Energy Management Cell

Great Place To Work. Certified MAR 2024-MAR 2025 INDIA

Energy Management Committee

Reduction of motor standard energy loss by upgradation of pump

- Two pump with capacity of 100 cu.m / hr with connected power of 30 kW each for machinery cooling water
- Inspired with CII recommendation and upgraded same with single pump with capacity of 200cu.m /hr with connected power of 45 kW
- Resulting power saving of 15 kWh
- Annual saving of 8 Lakhs
- Investment 6 Lakhs
- ROT 9 months
- ➢ Replicable

Carbon Footprint

Great Place To Work。 Certified

MAR 2024-MAR 2025

"Carbon footprint" Kg of CO₂/MT of Cement

1st Nov'22

Direct equivalent CO₂ emission per MT of cement.

Great Place To Work Certified Mar 2024-Mar 2021

'Net Zero Carbon Footprint' Target Commitment

 Net Zero Target Year / Commitment if any: *Achieve "Net Zero Carbon" status by* 2070.

Roadmap for achieving the target:

We pursue various levels as given below to achieve the target.

- Scope 1 emissions: The Company continuously pursues the following measures to reduce its Scope 1 emission:
 - > Reducing specific thermal energy.
 - > Reducing specific electrical energy.
 - > Reducing the clinker factor.
 - > Improving the Thermal Substitution Rate.
 - > Improving the utilization of low-grade limestone.
 - > Increasing the use of renewable energy.
 - > Generating power using WHRS.
 - Collaborating closely with technology suppliers for developing secondary CO2 abatement technologies for Carbon Capture Utilisation and Sequestration (CCUS)

Great Place To Work Certified Mar 2024-MAR 2025 INDIA

'Net Zero Carbon Footprint' Target Commitment

- Scope 2 emissions: The Company continuously pursues the following measures to reduce its Scope 2 emission:
 - Migration towards renewable energy 50% of the total energy has to come from renewable energy and Waste Heat Recovery Systems (WHRS).
 - Reduction in plant-specific electrical energy.
- Scope 3 emissions:
- Currently, the Company is working on the logistics' CO2 footprint by migrating towards bulk transportation and improving fleet efficiency.
- Minimizing employee business commutation by leveraging the benefits of digitization.
- > Migration towards bio fuels.
- > Migration towards electric vehicles.
- Any voluntary initiatives commitment (i.e., RE 100, EP 100, SBTI etc.): We are exploring the possibility of getting our CO2 targets validated by SBTI in the next 2-3 years.

Awards and Accolades 2021-23

Great Place To Work。 Certified

AWARDS AND ACCOLADES

Recognized as Excellent Energy efficient Unit-2023

Confederation of Indian Industry

24th National Award for Excellence in Energy Management 2023

This is to certify that

Orient Cement Limited, Chittapur

has been recognized as

" Excellent Energy Efficient Unit"

This acknowledgement is based on the evaluation by the panel of judges at the "National Award for Excellence in Energy Management" held during 13 - 15 Sep 2023, Hyderabad

holadal

K. S. Venkatagiri Executive Director CII - Gedrej GBC

Ravichandran Purushothaman Chaiman, Energy Efficiency Council Cfl - Gedraj GBC

Great Place To Work Certified

Recognized as National Energy Leader-2023

Confederation of Indian Industry

24th National Award for Excellence in Energy Management 2023

This is to certify that

Orient Cement Limited, Chittapur

has been recognized as

"National Energy Leader"

for their consistent and progressive performance in energy management. This acknowledgment is based on the evaluation by the panel of judges at the "National Award for Excellence in Energy Management" held during 13 - 15 Sep 2023, Hyderabad

6 Mahal

K S Venkatagiri Executive Director CII - Godrej GBC

Ravichandran Purushothaman Chairman, Energy Efficiency Council CII - Godrej GBC

SEEM National Energy Management Gold Award 2022

Great Place To Work。 Certified MAR 2024-MAR 2025

Greentech Environment Award 2023 Winner

Great Place To Work® Certified

Declared as winner in ENVIRONMENT EXCELLENCE - 2023

Certificate This is to certify that ORIENT CEMENT LTD. CHITTAPUR KALABURAGI has been declared WINNER for outstanding Achievements in

ENVIRONMENTAL EXCELLENCE

f Sharan.

K. Sharan Chairman & CEO 23rd Nov 2023 Sonmarg (J&K)

Major Achievements

Great Place To Work。

Certified MAR 2024-MAR 2025 INDIA

- One of the lowest energy consumption plant for both electrical and thermal.
- □ Achieved 1st Best Managed company in Cement sector.
- □ Achieved 50th place in best 100 companies in Great Place To Work Survey.

NOW, A CEMENT THAT BUILDS LEGACIES

Great

Place

To Work。 Certified

The Forever Cemen

TAN IN

ORIENT CEMENT

THANK YOU!

: <u>muralimohanraju.p@orientcement.com</u>

: +91-7829992123